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Abstract. We discuss the decomposition of the regular representation of crystallographic space
groups into elementary band representations. It is shown that the decomposition is in general not
unique. In particular, we discuss some orthorhombic space groups in detail.

1. Introduction

It is well known that, under certain circumstances, any finite-dimensional representation of
a group can be decomposed into its irreducible components. For instance, this is the case if
the group is finite or, more generally, compact. The representation may then be written as a
direct sum of its irreducible components. This decomposition is unique and there is a simple
way (namely via the characters) to compute how many times an irreducible representation
is contained in a given representation. Thus the irreducible representations can be seen as
building blocks of any representation of the group in question. In particular, each irreducible
representationλ is contained in the regular representation. In fact, it is contained exactlynλ
times in the regular representation, wherenλ is the dimension of the irreducible representation
λ.

For infinite groups the situation is in general more difficult. Nevertheless, a representation
may be completely decomposable. However, if one deals with infinite representations, the
decomposition of a representation need not be a direct sum of its irreducible representations
but may be a direct integral [1]. For instance, in the case of space groups, the representations
induced from a finite representation of a finite subgroup of the space group in question can be
written as the direct integral of its irreducible representations.

In the theory of energy bands the so-called band representations, which are certain
representations of the crystallographic space groups, are of great importance, since they
allow one to consider an energy band as a whole entity. In this context the elementary band
representations play a fundamental role. Recall that a band representation is called elementary
if it cannot be decomposed into two or more band representations. Although the elementary
band representations are highly reducible, they can be seen as the building blocks of non-
elementary band representations and hence they are somehow the analogue of the irreducible
representations.

∗ Dedicated to Professor Louis Michel who died on 30 December 1999.
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In this paper we want to discuss the decomposition of the regular representation into
elementary band representations. The regular representation can be written as a finite direct
sum of elementary band representations. Note, however, that this does not mean that the regular
representation is finite dimensional. In fact, both the regular representation and the band
representations are infinite dimensional. Only the number of elementary band representations
involved is finite. It turns out that the decomposition is in general not unique, but the number
of different decompositions is at least the number of different Wyckoff positions of the space
group in question. Moreover, each elementary band representation is contained in at least one
of the possible decompositions, but none of the decompositions contains all elementary band
representations (except in those cases where there is only one Wyckoff position with maximal
site symmetry group). In addition, we show that the decompositions do not necessarily consist
of elementary band representations corresponding to the same Wyckoff position but there are
decompositions which are a sum of band representations corresponding to different Wyckoff
positions.

The physics behind these considerations is the following. Consider a periodic solid. The
corresponding energy eigenfunctions are Bloch functions which are labelled by a wavevector
and a band index. The symmetry of these Bloch functions can be described by unitary
irreducible representations of the underlying space group. However, Bloch functions are
extended functions and one sometimes prefers to deal with localized functions. Such localized
orbitals are not eigenfunctions of the Hamiltonian and do not correspond to a single energy
but contain information about the energy band as a whole [2–7]. In order to fully exploit the
symmetry of the solid one uses not arbitrary localized orbitals but certain symmetry-adapted
orbitals that are localized at the symmetry centres of the solid in question. In a loose way of
speaking, such a symmetry-adapted localized orbital induces a band representation. In fact,
due to the lattice periodicity to each Wyckoff position there corresponds a lattice of equivalent
positions, and hence to each position there exists a localized orbital. Accordingly, such a set
of localized orbitals, which correspond to a lattice of symmetry centres, forms the basis for a
band representation [2–7].

Let us compare this situation with the case of an atom or molecule. There the symmetry
group is often a finite or compact continuous group of rotations. In this case we have only
one symmetry centre in contrast to the lattice of symmetry centres in the case of a periodic
solid. Consequently, the symmetry-adapted localized orbitals correspond to irreducible
representations of the corresponding rotation group in the case of atoms or molecules, whereas
the corresponding symmetry-adapted localized orbitals of a periodic solid correspond to a band
representation that, due to its definition, is not irreducible but infinite dimensional.

The crucial point for fully exploiting the symmetry of a physical system is to use
appropriate symmetry-adapted orbitals. In practical applications, however, one often starts
with some localized orbital that is not symmetry adapted and applies later on some
symmetrization procedure onto this orbital, which leads to several symmetry-adapted localized
orbitals, each of which transforms according to a certain irreducible representation of the
symmetry group in question. The group-theoretical background of this symmetrization
procedure is the following. The original orbital induces a representation of the symmetry
group in question. If the original orbital is general enough, the resulting representation
is the regular representation. The decomposition of this representation into its irreducible
constituents then leads to the symmetry-adapted localized orbitals. Since the decomposition is
unique in these cases, the resulting symmetry-adapted orbitals are unique (up to certain unitary
transformations). In fact, not the orbitals themselves but their symmetry character is unique.

In the case of periodic solids, whose symmetry is described by space groups, the situation
is more involved. Applying the standard group-theoretical symmetrization procedure onto a
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localized orbital leads to Bloch functions, which are of course not localized but extended
functions. In order to obtain symmetry-adapted localized functions one has to proceed
differently. Instead of decomposing the induced representation into irreducible representations
we decompose it into elementary band representations. The corresponding basis functions
are then, in fact, symmetry-adapted localized functions. However, the decomposition into
elementary band representations is not unique, as we show for the case of the regular
representation. Thus there are several different possibilities to decompose infinite-dimensional
representations of space groups, which gives rise to different symmetrization schemes, which
is in contrast to the case of atoms or molecules.

The motivation for this paper may be summarized as follows. Apart from the mathematical
problem of decomposing the regular representation of a given space group into band
representations which is a problem in its own right, its application to band structure calculation
might be of importance. For if one starts with the simplest case of perturbation theory with
one localized test function whose stabilizer group (i.e. a subgroup of the space group that
leaves the function invariant up to a phase factor) is trivial, then the localized test function
usually induces the regular representation of the space group in question, and the complete set
of alternative decompositions of the regular representation into band representations allows
one to predict the band structure as regards their symmetry properties, if in addition the type
of admissible Wyckoff positions for the localized functions describing the crystal constituents
can be prefixed from the outset.

2. Band representations

2.1. Wyckoff positions

Let w denote a (representative of a) Wyckoff position. Of course one should distinguish
between a Wyckoff position, which is a certain equivalence class of points ofR3, and a
representative of a Wyckoff position, which is a point ofR3, but for the sake of simplicity we
will not make a difference between these two concepts. It should always be clear from the
context which notion is meant. For example, if we talk about the site symmetry groupGw of a
Wyckoff positionw we mean, of course, the site symmetry groupGw of the representativew
of the Wyckoff position represented byw, which in turn can be seen as a representative of the
conjugacy class of site symmetry groups corresponding to the Wyckoff position represented by
w. Nevertheless, to avoid any misunderstandings, we mention that different representatives of
the same Wyckoff position give rise to equivalent band representations and thus one may speak
of band representations corresponding to a Wyckoff position, although the explicit matrices of
course depend on the representative chosen.

2.2. Band representations: general remarks

Let us briefly review the concept of band representations [2–7]. A band representationD(w,λ) is
a representation of a space groupG that is induced from a representationDλ of a site symmetry
groupGw ⊂ G, in symbolsD(w,λ) = Dλ,Gw↑G . For the sake of simplicity let us assume that
Dλ is unitary. The band representation can be constructed in the following way. We consider
the general case here. However, to understand the main part of the paper and the examples it
is sufficient to be familiar with the special case of simple band representations, which shall be
discussed further below. For a first reading one may skip the section below.

Take a representationDλ of a site symmetry groupGw and choose a basis for this
representation, i.e. choose a set of functionsϕλj (x), j = 1, . . . , n = dimDλ which are
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assumed to be localized functions and that transform according to the representationDλ:

U(R|s(R))ϕλj (x) = ϕλj (R−1(x− s(R))) =
n∑
`=1

Dλ
j̀ (R)ϕ

λ
` (x) (1)

for all (R|s(R)) ∈ Gw. Note thats(R) = w−Rw may be a non-primitive translation (ifG is
non-symmorphic). However, recall that there is the following coset decomposition ofG with
respect to the symmorphic subgroupGwsT , which is generated byGw andT , respectively,

G =
|P|/|Gw |∑
`=1

(R`|n(R`))GwsT (2)

wheren(R`) are, in general, non-primitive translations. In addition, we have employed the
definitionR1 = E andn(E) = 0. Recall, by definition that the semidirect product ofGw
andT is a symmorphic space group. The fact that there may be space group elements with
non-primitive translations may seem strange. However, note that the translational part of
the group elements depends on the choice of the origin. Usually one chooses the origin for
a symmorphic space group such that the translational part of any space group element is a
lattice translation, however, this choice although appropriate is not necessary. If we consider a
symmorphic subgroup of a non-symmorphic space group, the choice of origin is fixed by the
non-symmorphic supergroup and we cannot assume that the origin is chosen such that none
of the elements of the subgroup has a non-primitive translation. Nevertheless, an appropriate
choice of the origin would lead to vanishing non-primitive translations for all elements of the
symmorphic subgroup, but of course not for all elements of the non-symmorphic supergroup.
In our case such a choice of the origin would bew.

In the case whereGw is not isomorphic to the point groupP, i.e. isomorphic to a proper
subgroup ofP, thens := |P|/|Gw| > 1. If Gw is isomorphic to the point groupP, then
s = 1 and the coset decomposition reduces toG = GwsT . We now apply all the elements
(R`|n(R`) + t), ` = 1, . . . , s, t ∈ T onto the functionsϕλj (x) and define

ϕλj,(R`|n(R`)+t)(x) := U(R`|n(R`)+t)ϕλj (x) = ϕλj (R−1
` (x− n(R`)− t)). (3)

These localized functions form a basis for the band representationD(w,λ). Note that this
representation is infinite dimensional since the translation groupT is infinite. The band
representation is given explicitly by

U(R|n(R)+t)ϕλj,(R`|n(R`)+v)(x)

=
n∑

j ′=1

s∑
`′=1

Dλ
j ′j (R

−1
`′ RR`)1(RR`, R`′)ϕ

λ

j ′,(R`′ |n(R)+t+Rn(R`)+Rv−R`′s(R−1
`′ RR`))

(x)

(4)

=
n∑

j ′=1

s∑
`′=1

∑
v′∈T

D(w,λ)j ′,(R`′ |n(R`′ )+v′);j,(R`|n(R`)+v)((R|n(R) + t))ϕλj ′,(R`′ |n(R`′ )+v′)(x)

(5)

where we have employed the definitions

D(w,λ)j ′,(R`′ |n(R`′ )+v′);j,(R`|n(R`)+v) = Dλ
j ′j (R

−1
`′ RR`)1(RR`, R`′)δv′,n(R)+t+Rw`+Rv−w`′ (6)

w` := R`w +n(R`) = (R|n(R`))w (7)

1(RR`,R`′) :=
{

1 if RR`Pw = R`′Pw
0 otherwise.

(8)
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Note that (6) gives an explicit expression for the matrix representingD(w,λ) as an infinite array
whose rows and columns are indexed by pairsj, (R`|n(R`) + v), respectively. Alternatively,
one can also be interested in the Bloch functions and their transformation properties. Instead
of the (localized) functionsϕλj,(R`|n(R`)+t)(x), which give rise to infinite-dimensional band
representations we choose alternatively the following Bloch functions by adopting the
conventions

ψ
(w,λ)
j,` (k,x) := |B(T ∗)|−1/2

∑
t∈T

eik·tϕλj,(R`|n(R`)+t)(x) (9)

as basis functions for the band representationD(w,λ). Here |B(T ∗)| is the volume of the
Brillouin zoneB(T ∗). Equivalently, one can define these Bloch functions by

ψ
(w,λ)
j (k,x) := |B(T ∗)|−1/2

∑
t∈T

eik·tϕλj (x− t) (10)

ψ
(w,λ)
j,` (k,x) := U(R`|n(R`))ψ(w,λ)

j (R−1
` k,x). (11)

One can easily prove that these Bloch functions transform according to (see [3, 5, 6])

U(R|n(R)+t)ψ
(w,λ)
j ;` (k,x) = e−iRk·t

n∑
j ′=1

|P|/|Gw |∑
`′=1

e−iRk·(n(R)+Rn(R`)−n(R`′ )−R`′s(R−1
`′ RR`))

×1(RR`,R`′)Dλ
j ′j (R

−1
`′ RR`)ψ

(w,λ)
j ′;`′ (Rk,x) (12)

= e−iRk·(n(R)+t)
n∑

j ′=1

|P|/|Gw |∑
`′=1

e−iRk·(Rw`−w`′ )

×1(RR`,R`′)Dλ
j ′j (R

−1
`′ RR`)ψ

(w,λ)
j ′;`′ (Rk,x) (13)

=
n∑

j ′=1

|P|/|Gw |∑
`′=1

D(w,λ)j ′`′;j`(k, (R|n(R) + t))ψ(w,λ)
j ′;`′ (Rk,x). (14)

Note that the matrices

D(w,λ)j ′`′;j`(k, (R|n(R) + t)) = e−iRk·(n(R)+t)e−iRk·(Rw`−w`′ )1(RR`, R`′)Dλ
j ′j (R

−1
`′ RR`) (15)

are finite dimensional. However, this is no contradiction of the fact that the band representation
D(w,λ) is infinite dimensional, since the matricesD(w,λ)(k, (R|n(R) + t)) depend on the
wavevectork ∈ B(T ∗), and the band representationD(w,λ) consists of (non-countably)
infinitely many matricesD(w,λ)(k, (R|n(R) + t)).

2.3. Simple band representations

Let us consider the special case of simple band representations now. A simple band
representation is only possible if the space group in question is symmorphic, since only in
this case can site symmetry groupsGw that are isomorphic to the point groupP exist. A simple
band representation is a band representation induced from a one-dimensional representation of
a site symmetry groupGw isomorphic to the point groupP. It can be constructed as follows.

Take a one-dimensional representationDλ of a site symmetry groupGw ∼ P and choose
a localized functionϕλ(x) which transforms according to the representationDλ:

U(R|s(R))ϕλ(x) = ϕλ(R−1(x− s(R))) = Dλ(R)ϕλ(x) (16)

for all (R|s(R)) ∈ Gw. Note thats(R) = w − Rw is a lattice vector.
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We now apply all the elements(E|t), t ∈ T onto the functionsϕλ(x) and define

ϕλt (x) := U(E|t)ϕλ(x) = ϕλ(x− t). (17)

These localized functions form a basis for the band representationD(w,λ). Note that this
representation is infinite dimensional since the translation groupT is infinite. The band
representation is given explicitly by

U(R|t)ϕλv(x) = Dλ(R)ϕλt+Rv−s(R)(x) =
∑
v′∈T

D(w,λ)v′;v (R|t)ϕλv′(x) (18)

where we have employed the definitions

D(w,λ)v′v = Dλ(R)δv′,t+Rv+Rw−w. (19)

Note that (19) gives an explicit expression for the matrix representingD(w,λ) Alternatively, one
can also be interested in the Bloch functions and their transformation properties. Instead of
the (localized) functionsϕλt (x), which give rise to infinite-dimensional matrix representations
we choose alternatively the following Bloch function by adopting the conventions

ψ(w,λ)(k,x) := |B(T ∗)|−1/2
∑
t∈T

eik·tϕλt (x) (20)

as basis functions for the band representationD(w,λ). Here |B(T ∗)| is the volume of the
Brillouin zoneB(T ∗).

One can easily prove that these Bloch functions transform according to (see [3, 5, 6])

U(R|t)ψ(w,λ)(k,x) = e−iRk·te−iRk·(Rw−w)Dλ(R)ψ(w,λ)(Rk,x) (21)

= D(w,λ)(k, (R|t))ψ(w,λ)(Rk,x) (22)

where

D(w,λ)(k, (R|t)) = e−iRk·te−iRk·(Rw−w)Dλ(R). (23)

2.4. Equivalence of band representations

An essential concept is the notion of the equivalence of band representations. In the case of
band representations there are several notions of equivalence that we briefly recall here. We
call two band representationsD1 andD2 weakly equivalent if and only if there exists a unitary
matrixS such that

D1(g)S = SD2(g) (24)

for all g ∈ G. This condition may be equivalently formulated in terms of the finite dimensional
butk-dependent matricesDi (k, g). The band representationsD1 andD2 are weakly equivalent
if there exists a (finite-dimensional) unitary matrixS(k) for almost everyk in the Brillouin
zoneB(T ∗), such that

D1(k, (R|n(R) + t))S(k) = S(Rk)D2(k, (R|n(R) + t)) (25)

holds true. In the case where the band representation is simple,S(k) reduces to a unimodular
function ofk. This is a rather coarse equivalence criterion, since the set of all special points
of the Brillouin zone is of measure zero [8]. A finer classification of band representations
is obtained if one requires thatS(k) is unitary and satisfies (25) for allk ∈ B(T ∗). If this
condition is satisfied we call the two band representations equivalent. A list of all equivalent
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band representations can be found in [9]. This equivalence criterion is not enough for physics
[10]. Here it is required in addition thatS(k) be continuous. In this case we call the two band
representations strongly equivalent. Another notion of equivalence, the so-called physical
equivalence [10], is based on the Berry phase [11, 12]. In the case of simple bands, i.e.
if dim Dλ = 1 andGw ' P, the notion of strong equivalence and physical equivalence
coincide.

3. Decomposition of the regular representation—general considerations

Let us now turn to the problem of the decomposition of the regular representation into an
elementary band representation. Recall that a necessary condition for a band representation
to be elementary is that it corresponds to a Wyckoff position whose site symmetry group is
maximal, see, e.g., [9]. Hence in the followingw always denotes a Wyckoff position such that
the corresponding site symmetry groupGw is maximal. Note thatGw ∼ P is possible if and
only if G is symmorphic.

For decomposing the regular representation into an elementary band representation it
is worth recalling the fact that both the regular representation and the elementary band
representations can be seen as induced representations. The regular representation is the
representation induced from the trivial subgroup consisting of the unit element only, whereas
the band representations are induced from representations of the site symmetry groupGw ⊂ G.
Now we make use of the fact that induction is transitive and we can thus perform the induction
process in two steps. In fact, we use the induction chain{(E|0)} → Gw → G. Thus we
obtain in the first step the regular representation of the finite subgroupGw, and then we have
to construct the representation ofG induced from the regular representation ofGw. Thus
the regular representationDreg of the space groupG can be obtained by induction from the
regular representationDw,reg of the site symmetry groupGw, i.e.Dreg= Dw,reg↑G . Similarly,
the elementary band representationsD(w,λ) are defined as representations induced from the
irreducible representationsDλ of the site symmetry groupGw. Thus we obtain a decomposition
of the regular representation ofG into elementary band representations by decomposing the
regular representation ofGw into the irreducible representations ofGw. From the decomposition
Dw,reg=⊕λ nλD

λ we infer a decomposition of the regular representation ofG:

Dreg=
⊕
λ

nλD(w,λ). (26)

Since there are, in general, several Wyckoff positionsw whose site symmetry groups are
maximal, the decomposition of the regular representation is not unique, in particular, ifw and
w′ are two different Wyckoff positions with maximal site symmetry group, we have

Dreg=
⊕
λ

nλD(w,λ) =
⊕
λ′
n′λ′D

(w′,λ′). (27)

These decompositions are in general not equivalent. In fact, they can be equivalent if and only
if the sets of elementary band representations corresponding to the Wyckoff positionsw andw′

are equivalent, i.e. if each of the elementary band representations corresponding to the Wyckoff
positionw is equivalent to an elementary band representation corresponding tow′. Thus in
order to decide whether two decompositions are inequivalent or not we must know whether two
elementary band representations corresponding to different Wyckoff positions are equivalent or
not. The problem of (mathematical) equivalence of band representation has already been solved
by Bacryet al [9] and they have listed all (mathematically) equivalent band representations.
For our purpose only their tables 4 and 5 are important, where they list all pairs of Wyckoff
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positions which give rise to (mathematically) equivalent sets of band representations. Thus,
except for the space groups listed in the tables 4 and 5 of [9], decompositions of the regular
representation corresponding to different Wyckoff positions are (mathematically) inequivalent,
and hence there are at least as many inequivalent decompositions of the regular representation
as there are Wyckoff positions (with maximal site symmetry group).

However, for physics a stronger type of equivalence is necessary, namely the so-called
physical equivalence [9, 10]. It turns out that in the case of symmorphic space groups all
band representations corresponding to different Wyckoff positions are physically inequivalent
[10]. Only in the case of non-symmorphic space groups might there be physically equivalent
elementary space groups corresponding to different Wyckoff positions. In order for elementary
band representations to be physically equivalent it is necessary but not sufficient that they
are mathematically equivalent. The question of physical equivalence for non-symmorphic
space groups has not been solved completely yet, however, some of the elementary band
representations of non-symmorphic space groups which are mathematically equivalent are not
physically equivalent [15, 16]. Hence we may state that there are at least as many physically
inequivalent decompositions as there are Wyckoff positions (whose site symmetry group is
maximal), except possibly for some of the non-symmorphic space groups listed in tables 4 and
5 of [9].

Let us call two (maximal) Wyckoff positionsw andw′ (mathematically, physically)
b-equivalent if they give rise to a (mathematically, physically) equivalent set of band
representations, i.e. if each of the elementary band representations corresponding tow is
(mathematically, physically) equivalent to an elementary band representation corresponding
to w′ and vice versa. Then we may summarize the considerations above as follows: there
are at least as many (mathematically/physically) inequivalent decompositions as there are
(mathematically/physically) b-inequivalent Wyckoff positions whose site symmetry group is
maximal. Except for the space groups listed in the tables 4 and 5 of [9], this number is equal to
the number of different Wyckoff positions with maximal site symmetry group. In particular,
for symmorphic space groups there are at least as many physically inequivalent decompositions
as there are different Wyckoff positions with maximal site symmetry group.

Looking at equation (26), we see at once that each elementary band representation(w, λ)

is contained in some decomposition of the regular representation. This is due to the fact that
each of these decompositions contains all elementary band representations(w, λ) for fixedw,
and to each Wyckoff positionw there corresponds a decomposition. However, note that in
general a given decomposition does not contain all elementary band representations, which is
in contrast to the decomposition of the regular representation into irreducible representations.

Up to know we have considered only decompositions of the regular representation which
are of the form (26). However, there is no need for all decompositions to be of the form (26),
and in fact, there are alternative decompositions. In the next section we will show by means
of certain examples that there are decompositions of the regular representation that involve
elementary band representations corresponding to different Wyckoff positions. However, a
general scheme for finding all decompositions of the regular representation has not yet been
found and requires further investigation.

4. Example P222

Let us consider the symmorphic orthorhombic space group P222= #16 as an example. Its
point groupP = {E,C2x, C2y, C2z} is Abelian and hence all band representations are simple.
A basis of the lattice is given bya1 = aex , a2 = bey , a3 = cez, wherea, b andc are the
lattice constants. We have eight different Wyckoff positions whose site symmetry groups are
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isomorphic to the point groupP, namelyw = 1
2

∑3
i=1 niai , whereni ∈ {0, 1}, respectively.

The corresponding site symmetry groups read

Gw = {(E|0), (C2x |2w − n1ax), (C2y |2w − n2ay), (C2z|2w − n3az)} (28)

where the special translationsw − C2iw with i = x, y, z are represented as written above.

4.1. Elementary band representations

Let A(w,λ)(x) be a localized function transforming according to the representationλ under
the action of the site symmetry groupGw and defineA(w,λ)t (x) := A(w,λ)(x− t). Then these
functions transform according to the band representation(w, λ). The transformation law reads
as follows:

U(E|t)A(w,λ)v (x) = A(w,λ)v+t (x) =
∑
u∈T

D(w,λ)uv ((E|t))A(w,λ)u (x) (29)

U(C2j |t)A
(w,λ)
v (x) = Dλ(C2j )A

(w,λ)
C2jv+t−2w+njaj

(x) =
∑
u∈T

D(w,λ)uv ((C2j |t))A(w,λ)u (x) (30)

D(w,λ)uv ((E|t)) = δu,t+v (31)

D(w,λ)uv ((C2j |t)) = Dλ(C2j )δu,t+C2jv−2w+njaj . (32)

With respect to the corresponding Bloch functions

φ(w,λ)(k,x) = N(w,λ)
∑
t∈T

eik·tA
(w,λ)
t (x) (33)

the band representation(w, λ) reads

U(E|t)φ(w,λ)(k,x) = e−ik·tφ(w,λ)(k,x) = D(w,λ)(k, (E|t))φ(w,λ)(k,x) (34)

U(C2j |t)φ
(w,λ)(k,x) = Dλ(C2j )e

−iC2jk·(t−2w+njaj )φ(w,λ)(C2jk,x) (35)

= D(w,λ)(k, (C2j |t))φ(w,λ)(C2jk,x) (36)

D(w,λ)(k, (E|t)) = e−ik·t (37)

D(w,λ)(k, (C2j |t)) = Dλ(C2j )e
−iC2jk·(t−2w+njaj ). (38)

4.2. Regular representation

The regular representationDreg reads explicitly

Dreg
(R′′|t′′),(R′|t′)((R|t)) = δ(R′′|t′′),(R|t)(R′|t′) (39)

or alternatively

D
reg
R′′,R′(k, (E|t)) = e−ik·tδR′′,R′ (40)

D
reg
R′′,R′(k, (C2j |t)) = e−iC2jk·tδR′′,C2jR′ . (41)

4.3. Decomposition of the regular representation

As mentioned above, decompositions of the regular representation can be obtained by
decomposing the regular representation of the maximal site symmetry groups. In our case
we have to decompose the regular representation of the point groupP. This decomposition
reads

Dreg= D1⊕D2⊕D3⊕D4 (42)
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whereD1 is the trivial representation and

D2(C2x) = −1 D2(C2y) = −1 D2(C2z) = +1 (43)

D3(C2x) = +1 D3(C2y) = −1 D3(C2z) = −1 (44)

D4(C2x) = −1 D4(C2y) = +1 D4(C2z) = −1. (45)

Thus we have the following eight decompositions (one for each Wyckoff positionw) of the
regular representation ofG:

Dreg= D(w,1) ⊕ D(w,2) ⊕ D(w,3) ⊕ D(w,4). (46)

4.4. Explicit decomposition

We can write down explicitly the matricesS(k) which decompose the regular representation.
Let D(w,reg)(k, g) be the matrices corresponding to the decomposition of the regular
representation into elementary band representations corresponding tow, i.e.D(w,reg)

µλ (k, g) =
δµ,λD

(w,λ)(k, g). Then we have to find unitary matricesS(k) such that the conditions

D(w,reg)(k, (R|t))S(k) = S(Rk)Dreg(k, (R|t)) (47)

hold true. These equations read explicitly

D(w,λ)(k, (R|t))Sλ,R′(k) = Sλ,RR′(Rk)e−iRk·t (48)

or equivalently

Dλ(R)eiRk·(w−Rw)Sλ,R′(k) = Sλ,RR′(Rk). (49)

Note that the intertwining matricesS(k) have two different indices:λ = 1, . . . ,4, which labels
the different unitary irreducible representations of the point groupP, and the indexR where
R ∈ P. The reason for this indexing of the matrix elements is that we have to use different
indices for the representationsD(w,reg)(k, g) andDreg(k, g), respectively. It is natural to use
the group elements for labelling the matrix elements of the regular representation, whereas in
the case of the decomposed representation it is most appropriate and sufficient to use the irrep
labels as indices, since the irreps of the Abelian point groupP = 222 are all one dimensional.

Equation (49) is valid forR = E, whereas forR = C2j these equations are only satisfied
if we set

Sλ,C2j (k) = Dλ(C2j )e
ik·(w−C2jw)Sλ,E(C2jk) = Dλ(C2j )e

ik·(2w−njaj )Sλ,E(C2jk). (50)

Here the elementsSλ,E(k), λ = 1, . . . ,4 are still arbitrary. To guarantee unitarity we choose

Sλ,E(k) = 1
2 (51)

and hence

Sλ,C2j (k) = 1
2D

λ(C2j )e
ik·(2w−njaj ). (52)

Thus we have found unitary matricesS(k) that decompose the regular representation into the
elementary band reps(w, λ) for each fixed Wyckoff positionw, respectively.
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4.5. Alternative decompositions

It is natural to ask whether there are still more decompositions of the regular representation,
i.e. whether we can find decompositions of the form

Dreg= D(w1,λ1) ⊕ D(w2,λ2) ⊕ D(w3,λ3) ⊕ D(w4,λ4) (53)

such that not allwj are the same Wyckoff positions. In fact, it turns out that such
decompositions exist. LetD(k, g) be the matrices corresponding to the decomposition
mentioned above, i.e.Dj`(k, g) = δj,`D

(w`,λ`)(k, g). Again the problem is to find unitary
matricesS(k) such that

D(k, (R|t))S(k) = S(Rk)Dreg(k, (R|t)) (54)

is satisfied for all group elements(R|t), respectively. Again these equations are trivial for
R = E, whereas forR = C2j we obtain

Dλ`(C2j )e
iC2jk·(w`−C2jw`)S`,R′(k) = S`,C2jR′(C2jk). (55)

In fact, a solution of these equations is given by

S`,C2j (k) = Dλ`(C2j )e
ik·(w`−C2jw`)S`,E(C2jk). (56)

The only problem that remains is to find periodic† functionsS`,E(k), ` = 1, . . . ,4 such that
the matricesS(k) are unitary for allk, i.e. such that

S`,E(k)S`′,E(k)
∗ +

3∑
j=1

Dλ`(C2j )D
λ`′ (C2j )e

ik·(w`−C2jw`−w`′+C2jw`′ )

×S`,E(C2jk)S`′,E(C2jk)
∗ = δ`,`′ (57)

is satisfied for allk. Fork = 0 these equations reduce to

S`,E(0)S`′,E(0)∗
(

1 +
3∑
j=1

Dλ`(C2j )D
λ`′ (C2j )

)
= δ`,`′ (58)

which imply that allλ` have to be different. Of course, this also follows from the decomposition
of the regular representationDreg(k, (R|t)) for k = 0 into irreducible representations of P222.
Without any loss of generality we may assume thatλ` = `. For all k with P(k) = P, i.e.
kj = mj(π/aj ),mj ∈ {0, 1}, we obtain similar equations:

S`,E(k)S`′,E(k)
∗

(
1 +

3∑
j=1

D`(C2j )D
`′(C2j )e

ik·(w`−C2jw`−w`′+C2jw`′ )

)
= δ`,`′ . (59)

Without any loss of generality we may assume thatw1 = 0, since we can replacewj by
wj −w1. Then these equations can be satisfied if only if the representations

D(`,k)(C2j ) := D`(C2j )e
ik·(w`−C2jw`) (60)

for ` = 2, 3, 4 are a permutation of the representationsD`(C2j ), ` = 2, 3, 4 for all k with
P(k) = P. This implies some restrictions on the possible Wyckoff positionswj . Let us
discuss the casè= 2 in detail. RecallD2(C2z) = 1 andD2(C2x) = D2(C2y) = −1. Thus
D(2,k) = D2 must hold true if eik·(w2−C2zw2) = 1, which implies that

eik·(w2−C2xw2) = eik·(w2−C2yw2) = 1 if eik·(w2−C2zw2) = 1 (61)

† Periodicity is essential. Note that the choiceS`,E(k) = eik·w` leads to a unitary matrixS(k), which is in general
not periodic with respect toT ∗, and thus not continuous on the Brillouin zone.
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has to be satisfied. Now we insert the special vectorsk = (π/c)ez andk = (π/a)ex +(π/b)ey
into this condition. Thus (61) reduces fork = (π/c)ez to

w2z

c
= 0 (62)

and fork = (π/a)ex + (π/b)ey the condition (61) is equivalent to

w2x

a
+
w2y

b
= 0 H⇒ w2x

a
= w2y

b
= 0 (63)

where all equations have to be understood modZ. Similarly, we infer for ` = 3, 4 the
following restrictions forw3,w4, respectively:

w3x

a
= 0 (64)

w3y

b
+
w3z

c
= 0 H⇒ w3y

b
= w3z

c
= 0 (65)

w4y

b
= 0 (66)

w4x

a
+
w4z

c
= 0 H⇒ w4x

a
= w4z

c
= 0. (67)

In addition,D(2,k)D(3,k) = D(4,k) from which we inferw4 = w2 + w3 modT . Hence we
have the following restrictions for the vectorswj :

w2z

c
= 0

w3x

a
= 0

w2y

b
+
w3y

b
= 0 (68)

w2x

a
+
w2y

b
= 0 H⇒ w2x

a
= w2y

b
= 0 (69)

w3y

b
+
w3z

c
= 0 H⇒ w3y

b
= w3z

c
= 0 (70)

w2x

a
+
w3z

c
= 0 H⇒ w2x

a
= w3z

c
= 0 (71)

which have the following three non-trivial solutions:

w2 = 0 w3 = w4 = 1
2cez (72)

w3 = 0 w2 = w4 = 1
2aex (73)

w4 = 0 w2 = w3 = 1
2bey. (74)

Apart from the obvious decompositions (46), these solutions give rise to the following
additional decompositions of the regular representation:

Dreg= D(w,1) ⊕ D(w,2) ⊕ D(w+ 1
2a3,3) ⊕ D(w+ 1

2a3,4) (75)

Dreg= D(w,1) ⊕ D(w+ 1
2a1,2) ⊕ D(w,3) ⊕ D(w+ 1

2a1,4) (76)

Dreg= D(w,1) ⊕ D(w+ 1
2a2,2) ⊕ D(w+ 1

2a2,3) ⊕ D(w,4) (77)

where we have returned to the general casew1 =: w. In fact, we can explicitly state the
intertwining matrices for these cases. As an example we choosew1 = w2 = w,w3 = w4 =
(c/2)ez. ThenS(k) reads

S`,E(k) = 1
2 ` = 1, . . . ,4 (78)

S`,C2j (k) = 1
2D

`(C2j )e
ik·(w−C2jw) ` = 1, 2 (79)

S`,C2j (k) = 1
2D

`(C2j )e
ik·((w+ 1

2a3)−C2j (w+ 1
2a3)) ` = 3, 4 (80)



Regular representation of space groups 1643

and explicitly

S(k) = 1
2


1 eik·(w−C2xw) eik·(w−C2yw) eik·(w−C2zw)

1 −eik·(w−C2xw) −eik·(w−C2yw) eik·(w−C2zw)

1 eik·(w−C2xw+a3) −eik·(w−C2yw+a3) −eik·(w−C2zw)

1 −eik·(w−C2xw+a3) eik·(w−C2yw+a3) −eik·(w−C2zw)

. (81)

The analyticity and periodicity ofS(k) are obvious, which implies that the corresponding
representations are also topologically equivalent.

4.6. Conclusions for P222

The decomposition of the regular representation into elementary band representations is not
unique. There are 32 different decompositions of the regular representation, and thus in fact
the number of different decompositions exceeds the number of different Wyckoff positions.
These 32 decompositions read explicitly

Dreg= D(w,1) ⊕ D(w,2) ⊕ D(w,3) ⊕ D(w,4) (82)

Dreg= D(w,1) ⊕ D(w,2) ⊕ D(w+ 1
2a3,3) ⊕ D(w+ 1

2a3,4) (83)

Dreg= D(w,1) ⊕ D(w+ 1
2a1,2) ⊕ D(w,3) ⊕ D(w+ 1

2a1,4) (84)

Dreg= D(w,1) ⊕ D(w+ 1
2a2,2) ⊕ D(w+ 1

2a2,3) ⊕ D(w,4). (85)

Note that all decompositions are of the form

Dreg= D(w1,1) ⊕ D(w2,2) ⊕ D(w3,3) ⊕ D(w4,4) (86)

wherew1+w2+w3+w4 ∈ T . This fact can be easily explained with the help of the generalized
Berry phasesa(K) (for a definition of the Berry phases see [11–15]). Since the generalized
Berry phases for the regular representation vanish, i.e.a(K) = 0, the generalized Berry phases
for the decompositions have to satisfya(K) =∑4

j=1K ·wj = 0 (mod 2π), which implies

that
∑4

j=1wj ∈ T . Note that the criterion
∑4

j=1wj ∈ T is necessary but not sufficient for a
sum of representations of the form (86) to be a decomposition of the regular representation.

5. Some remarks on F222

The face-centred orthorhombic space group F222= #22 has four different Wyckoff
positions with maximal site symmetry groupGw, namelywa = (0, 0, 0), wb = (0, 0, 1

2),
wc = ( 1

4,
1
4,

1
4), wd = ( 1

4,
1
4,

3
4), where the pairswa,wb andwc,wd induce equivalent band

representations [9, 10]. However, these equivalent band representations are not physically
equivalent, since they give rise to different Berry phases [9, 10], i.e. they are topologically
inequivalent. Consequently, these band representations cannot be connected by a continuous
k-dependent phase factor. Thus we have to distinguish carefully between these two notions of
equivalence.

If we use the first notion of equivalence, which is based on symmetry, then we obtain two
different decompositions of the regular representation, namely

Dreg= D(w,1) ⊕ D(w,2) ⊕ D(w,3) ⊕ D(w,4) (87)

wherew = (0, 0, 0), ( 1
4,

1
4,

1
4). Equivalently, one could choosew = (0, 0, 1

2), (
1
4,

1
4,

3
4),

respectively.
Now let us turn to the other notion of equivalence, namely physical equivalence, which is

the more interesting one. Since the band representations corresponding to the four Wyckoff
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positionswj , j = a, . . . , d are all physically inequivalent, we have the following four different
decompositions:

Dreg= D(w,1) ⊕ D(w,2) ⊕ D(w,3) ⊕ D(w,4) (88)

wherew = wj , j = a, . . . , d. In addition, we have the following four decompositions:

Dreg= D(w,1) ⊕ D(w,2) ⊕ D(w+ 1
2a3,3) ⊕ D(w+ 1

2a3,4). (89)

Here we have employed again the definitionsa1 = aex , a2 = bey , a3 = cez. Note
that these vectors are still lattice vectors, but they do not form a basis of the face-centred
lattice. The intertwining matricesS(k) are again given by (81). Thus we have eight different
decompositions of the regular representation.

In addition, we can infer from the last decomposition the following interesting fact. The
sum of the two elementary band representationsD(wa,3) ⊕ D(wa,4) is physically equivalent to
D(wb,3)⊕D(wb,4), whereas the componentsD(wa,3) andD(wa,4) are equivalent, but not physically
equivalent to the band representationsD(wb,3) andD(wb,4), respectively. Thus there does not
exist a continuous phase connecting the equivalent band representationsD(wa,λ) andD(wb,λ), but
there exists a continuous and even analytic intertwining matrix for the sumsD(wa,3) ⊕D(wa,4)
andD(wb,3) ⊕ D(wb,4). An equivalent statement is valid forwc andwd .

In the case of the space group P222 we have a decomposition of the form (89), too, and thus
D(w,3)⊕D(w,4) ∼ D(w+ 1

2a3,3)⊕D(w+ 1
2a3,4) is also valid for the space group P222. However, note

the following subtle difference: in the case of the space group P222 the band representations
D(w,λ) andD(w+ 1

2a3,λ) are inequivalent, whereas in the case of F222 they are equivalent but not
physically equivalent.

6. Some remarks on I222

We consider the orthorhombic space group I222= #23, too. There are again four Wyckoff
positions that have a maximal site symmetry group, namelywa = 0, wb = ( 1

2, 0, 0),
wc = (0, 0, 1

2) andwd = (0, 1
2, 0). Again we find the decompositions

Dreg= D(w,1) ⊕ D(w,2) ⊕ D(w,3) ⊕ D(w,4) (90)

Dreg= D(w,1) ⊕ D(w,2) ⊕ D(w+ 1
2a3,3) ⊕ D(w+ 1

2a3,4) (91)

Dreg= D(w,1) ⊕ D(w+ 1
2a1,2) ⊕ D(w,3) ⊕ D(w+ 1

2a1,4) (92)

Dreg= D(w,1) ⊕ D(w+ 1
2a2,2) ⊕ D(w+ 1

2a2,3) ⊕ D(w,4). (93)

Apart from the obvious decompositions (90), all the other decompositions so far have one
feature in common. Two elementary band representations correspond to one Wyckoff position
and the other two correspond to a second Wyckoff position. For I222, however, there exist
decompositions such that each band representation corresponds to a different Wyckoff position.
We find

Dreg= D(w,1) ⊕ D(w+a1,2) ⊕ D(w+a2,3) ⊕ D(w+a3,4) (94)

Dreg= D(w,1) ⊕ D(w+a2,2) ⊕ D(w+a3,3) ⊕ D(w+a1,4). (95)

Also for these cases appropriate intertwining matricesS(k) can be constructed, however, they
have no simple structure. In total one has 24 different decompositions.
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7. Conclusions

The decomposition of the regular representation of a space group into elementary band
representations is, in general, not unique. The number of different decompositions is at least
the number of non-equivalent Wyckoff positions with maximal site symmetry group, and it
may be larger. For example, the space group P222 has eight Wyckoff positions but 32 different
decompositions of the regular representation. In particular, there are decompositions which
consist of elementary band representations corresponding to different Wyckoff positions.

To recapitulate, the important result of this paper is that the decomposition of the regular
representation of any crystallographic space group into a band representation is, in general,not
unique, since one may find different decompositions of the regular representation into distinct
band representations. In other words, one has more than one possibility for the decomposition
of the regular representation, which conversely allows one to predict the corresponding
band structure by pure group-theoretical arguments, if the type of Wyckoff position and the
transformation properties of the wavefunctions with respect to the corresponding site groups
are fixed. To be more strict, when starting from a given localized function (test function),
whose stabilizer group (which is a finite subgroup of the space group that leaves the given
localized function up to a phase factor invariant) is trivial, i.e. consists of the identity only,
then the space group elements applied to the localized function usually induce the regular
representation of the space group in question. Once this situation is realized, one can predict
the global band structure as regards their symmetry properties of any model Hamiltonian with
respect to this type of test function space by symmetry arguments only, if in addition admissible
Wyckoff positions, as possible candidates for the positions of the crystal constituents, can be
prefixed by the considered physical problem. The generalization of this statement is obvious.
For if n localized test functions are given which cannot be mutually interrelated by space
group elements and whose stabilizer groups are trivial, one induces then-fold direct sum
of the regular representation. Similar conclusions can be made as regards the symmetry
properties of the global band structure of any Hamiltonian, if in addition admissible Wyckoff
positions can be prefixed by the considered physical problem. However, it should be noted
that an increasing number of possible decompositions of then-fold direct sum of the regular
representation is possible which is due to then-fold appearance of the regular representation
and hence increasing number of possible combinations of different Wyckoff positions.
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